1) lim x→∞ | ____7x -1____ √(4x2 + 3x + 8) | 2) lim x→-∞ | __2x2 - x + 5__ 4x3 - 1 |
STEP 1: Separate the original expression to two fractional terms | |||
= | ______7x______ √(4x2 + 3x + 8) | - | _____1_____ √(4x2 + 3x + 8) |
STEP 2: Bring down the numerator of the first fractional term to become the denominator of the denominator | |||
= | ______7______ _√(4x2 + 3x + 8)_ x | - | _____1_____ √(4x2 + 3x + 8) |
STEP 3: Insert the x term inside the radical sign and manipulate. | |||
= | ______7______ √(4x2/x2 + 3x/x2 + 8/x2) | - | _____1_____ √(4x2 + 3x + 8) |
= | ______7______ √(4 + 3/x + 8/x2) | - | _____1_____ √(4x2 + 3x + 8) |
STEP 4: Evaluate the limit | |||
= | ______7______ √(4 + 3/∞ + 8/∞2) | - | _____1_____ √(4(∞)2 + 3(∞) + 8) |
= | ______7______ √(4 + 0 + 0) | - | _____1_____ √(∞ + ∞ + 8) |
= | _7_ √(4) | - | _1_ ∞ |
= | _7_ 2 | - | 0 |
= | _7_ 2 |
To follow yung number 2! Ang hirap kasi magcode ng fractional terms sa HTML. Basta ang sagot sa 2 ay lim =0.
0 comments:
Post a Comment